1,856 research outputs found

    Is Lawfare Worth Defining - Report of the Cleveland Experts Meeting - September 11, 2010

    Get PDF
    This is the report of the Cleveland Experts Meeting

    Is Lawfare Worth Defining - Report of the Cleveland Experts Meeting - September 11, 2010

    Get PDF
    This is the report of the Cleveland Experts Meeting

    Mass Expansions of Screened Perturbation Theory

    Get PDF
    The thermodynamics of massless phi^4-theory is studied within screened perturbation theory (SPT). In this method the perturbative expansion is reorganized by adding and subtracting a mass term in the Lagrangian. We analytically calculate the pressure and entropy to three-loop order and the screening mass to two-loop order, expanding in powers of m/T. The truncated m/T-expansion results are compared with numerical SPT results for the pressure, entropy and screening mass which are accurate to all orders in m/T. It is shown that the m/T-expansion converges quickly and provides an accurate description of the thermodynamic functions for large values of the coupling constant.Comment: 22 pages, 10 figure

    Screened Perturbation Theory to Three Loops

    Full text link
    The thermal physics of a massless scalar field with a phi^4 interaction is studied within screened perturbation theory (SPT). In this method the perturbative expansion is reorganized by adding and subtracting a mass term in the lagrangian. We consider several different mass prescriptions that generalize the one-loop gap equation to two-loop order. We calculate the pressure and entropy to three-loop order and the screening mass to two-loop order. In contrast to the weak-coupling expansion, the SPT-improved approximations appear to converge even for rather large values of the coupling constant.Comment: 30 pages, 10 figure

    Quantile forecasts of daily exchange rate returns from forecasts of realized volatility

    Get PDF
    Quantile forecasts are central to risk management decisions because of the widespread use of Value-at-Risk. A quantile forecast is the product of two factors: the model used to forecast volatility, and the method of computing quantiles from the volatility forecasts. In this paper we calculate and evaluate quantile forecasts of the daily exchange rate returns of five currencies. The forecasting models that have been used in recent analyses of the predictability of daily realized volatility permit a comparison of the predictive power of different measures of intraday variation and intraday returns in forecasting exchange rate variability. The methods of computing quantile forecasts include making distributional assumptions for future daily returns as well as using the empirical distribution of predicted standardized returns with both rolling and recursive samples. Our main findings are that the Heterogenous Autoregressive model provides more accurate volatility and quantile forecasts for currencies which experience shifts in volatility, such as the Canadian dollar, and that the use of the empirical distribution to calculate quantiles can improve forecasts when there are shifts

    The Equation of State for Dense QCD and Quark Stars

    Get PDF
    We calculate the equation of state for degenerate quark matter to leading order in hard-dense-loop (HDL) perturbation theory. We solve the Tolman-Oppenheimer-Volkov equations to obtain the mass-radius relation for dense quark stars. Both the perturbative QCD and the HDL equations of state have a large variation with respect to the renormalization scale for quark chemical potential below 1 GeV which leads to large theoretical uncertainties in the quark star mass-radius relation.Comment: 7 pages, 3 figure

    Dynamics of Quark-Gluon-Plasma Instabilities in Discretized Hard-Loop Approximation

    Full text link
    Non-Abelian plasma instabilities have been proposed as a possible explanation for fast isotropization of the quark-gluon plasma produced in relativistic heavy-ion collisions. We study the real-time evolution of these instabilities in non-Abelian plasmas with a momentum-space anisotropy using a hard-loop effective theory that is discretized in the velocities of hard particles. We extend our previous results on the evolution of the most unstable modes, which are constant in directions transverse to the direction of anisotropy, from gauge group SU(2) to SU(3). We also present first full 3+1-dimensional simulation results based on velocity-discretized hard loops. In contrast to the effectively 1+1-dimensional transversely constant modes we find subexponential behaviour at late times.Comment: 30 pages, 16 figures. v3 typos fixe
    • …
    corecore